class: bottom, center, title-slide # Working with data in elite sport ### Dr Jacquie Tran |
@jacquietran
| 29 Nov 2019 --- class: right, middle background-image: url(https://raw.githubusercontent.com/jacquietran/2019_stats_teachers_day/master/images/uofabg.png) background-size: cover -- ## Today's session Intro to performance sport and sport science Explore how data is used in performance sport Work together on a sports data problem --- class: inverse, center, middle # A bit about me... --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/aus_map_base.jpg) background-size: cover .footnote[ Image credit: [**University of Melbourne**](https://biomedicalsciences.unimelb.edu.au/departments/pharmacology/engage/avru/discover/snakes/common-brown-snake) ] --- class: center, top background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/eastern_brown_snake_aus.jpg) background-size: cover .footnote[ Image credit: [**University of Melbourne**](https://biomedicalsciences.unimelb.edu.au/departments/pharmacology/engage/avru/discover/snakes/common-brown-snake) ] --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/flinders_st.jpg) background-size: cover .footnote[ Image credit: [**Flickr**](https://www.flickr.com/photos/neelelora/6987389739/) ] --- class: inverse, center, middle # "Applied sport science" # 🤔 --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/deakin_sprint_start.jpg) background-size: cover .footnote[ Image credit: **Deakin University** ] --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/deakin_gait_lab.jpg) background-size: contain .footnote[ Image credit: **Deakin University** ] --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/deakin_vo2.jpg) background-size: cover .footnote[ Image credit: **Deakin University** ] --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/deakin_gym.jpg) background-size: contain .footnote[ Image credit: **Deakin University** ] --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/Match_Analysis_Portable_K2_Panoramic_Video_Camera_System.jpg) background-size: contain .footnote[ Image credit: [**Wikimedia**](https://en.wikipedia.org/wiki/File:Match_Analysis_Portable_K2_Panoramic_Video_Camera_System.jpg) ] --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/UniNutrition-043-1.jpg) background-size: contain .footnote[ Image credit: [**University of Bath**](https://www.teambath.com/physio-sport-science/sports-nutrition/) ] --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/Sports-Psychology1.jpg) background-size: 85% 85% .footnote[ Image credit: [**Boxing News**](http://www.boxingnewsonline.net/how-to-use-sports-psychology/) ] --- class: inverse, center, middle # A potted history of data in sport --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/question-mark.jpg) background-size: cover ## For many years... Sports performance data has been **challenging** to collect. -- <br /> <br /> <br /> Imagine that you want to measure how fast an athlete sprints over a short distance. **How would you do this?** --- class: center background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/av_hill_speed_testing.png) background-size: 65% 65% ## A.V. Hill in 1927 .footnote[ Image credit: [**Bassett, 2002, J Appl Physiol**](https://www.semanticscholar.org/paper/Scientific-contributions-of-A.-V.-Hill%3A-exercise-Bassett/fce9096c04e4425f30ba6ebe78a026c6b3be2ea6) ] --- class: center background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/deakin_light_gates.jpg) background-size: 60% 65% ## A contemporary solution, with **LASERS** .footnote[ Image credit: **Deakin University** ] --- class: center ## Sports analytics today We have more data than we know what to do with! <center> <img src="https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/lemon.gif" width="600px" /> </center> --- class: center ## Sports analytics today We need to (learn to) work accurately and efficiently with high-resolution data. <center> <img src="https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/lazy_homer.gif" width="500px" /> </center> --- ## A general workflow for sports analytics -- **Determine the need** through collaboration -- Articulate the need as a **question** -- Scope out the **"minimum viable product"** -- Allow time for **peer review** -- **Communicate insights** in appropriate ways --- class: inverse, center, middle # Sports analytics use cases ## Example 1: Mining text data --- class: center <img src="https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/hpsnz_logo.jpg" width="350px" /> ## Knowledge Edge for Tokyo -- Cross-sport, cross-time evidence -- Surveys and interviews -- Repeated data collection --- class: inverse, center, middle # 🤐 --- class: inverse, center, bottom <img src="https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/sportswomans_library.jpg" width="300px" /> ## The Sportswoman's Library, Vol. II (1898) --- .pull-left[  ] .pull-right[ *"For any form of outdoor exercise, the two chief requisites of costume are warmth and lightness. A thin flannel shirt is more useful than anything, worn with a short light skirt."* ] .footnote[ Image credit: [Project Gutenberg](https://www.gutenberg.org/files/47243/47243-h/47243-h.htm#LAWN-TENNIS) ] --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/sportswomans_lib_frequency.png) background-size: 85% 80% --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/sportswomans_lib_bigrams.png) background-size: 85% 80% --- class: inverse, center, middle # Sports analytics use cases ## Example 2: Team scoring dynamics --- class: center, middle  [**Merritt & Clauset, 2014**](https://link.springer.com/article/10.1140/epjds29), *EPJ Data Science* --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/merritt_clauset_fig3.PNG) background-size: contain --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/afl_tables_home.PNG) background-size: cover --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/afl_tables_score_progression.PNG) background-size: contain --- class: center, middle  <a href="https://www.jsams.org/article/S1440-2440(17)31300-2/abstract" target="_blank">**Tran & Letter, 2017**</a>, *J Sci Med Sport* --- class: center, middle background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/tran_letter_1.png) background-size: contain --- class: center, middle background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/tran_letter_2.png) background-size: contain --- class: center, middle background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/tran_letter_3.png) background-size: contain --- class: inverse, center, middle # Sports analytics use cases ## Example 3: Possession chains --- class: center, middle  --- class: center, middle <iframe width="900" height="540" src="https://www.youtube.com/embed/P7kk820tAvw?start=317" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/di_domenico_rationale.png) background-size: contain --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/di_domenico_header.png) background-size: contain --- background-image: url(https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/di_domenico_results_turnovers.png) background-size: 70% 90% --- class: inverse, center, middle <br /> <img src="https://raw.githubusercontent.com/jacquietran/2019_stats_teachers_day/master/images/magnify.gif" width="500px" /> # Let's work with some sports data! --- <br /> This exercise uses a publicly available data set that includes **all podium results from the Winter Olympic Games from 1924 to 2014, inclusive**. <center> <img src="https://raw.githubusercontent.com/jacquietran/2019_may_rladies_akl/master/images/ChloeKim.jpg" width="600px" /> </center> -- The `winter` data set is downloadable from this link: **[https://www.kaggle.com/the-guardian/olympic-games/data](https://www.kaggle.com/the-guardian/olympic-games/data)** --- class: inverse, center, middle # "Start with the end in mind." --- ## Considering different perspectives What makes the cut as a **"motivating question"**? -- It depends on **perspective**, **priorities**, and **roles**. --- class: center ## The athlete <img src="https://raw.githubusercontent.com/jacquietran/2019_stats_teachers_day/master/images/zoi.jpg" width="650px" /> --- class: center ## The coach <img src="https://raw.githubusercontent.com/jacquietran/2019_stats_teachers_day/master/images/coach.jpg" width="650px" /> --- class: center ## The performance analyst <img src="https://raw.githubusercontent.com/jacquietran/2019_stats_teachers_day/master/images/laptop.jpg" width="650px" /> --- class: center ## The performance director <img src="https://raw.githubusercontent.com/jacquietran/2019_stats_teachers_day/master/images/roadmap.png" width="500px" /> --- ## Activity Imagine you are in one of these roles: athlete, coach, performance analyst, or performance director. Think: **What matters to me in this role?** --- ## Activity Think about and / or note down **your initial questions** about the data set we're working with, which contains all podium results from the Winter Olympic Games from 1924 to 2014, inclusive. --- ## Activity **Discuss** in small groups, then we'll share with the wider group. - I am an / a [ athlete | coach | analyst | performance director ] - What matters to me is ... - The kinds of questions I am interested in are ... --- ## A worked example I am a **performance director** for a Winter Olympics sport in NZ. -- What matters to me is **keeping an eye on competitor countries** to benchmark ourselves and learn from what our opposition does well. -- The kinds of question I am interested in are **about how other countries have performed** at the Winter Olympics, especially those that have **favourable environmental conditions** for training and competing. --- class: center, middle ## **How many gold medals** were won by ## **Canada, Norway, and Sweden** at the ## **last five Winter Olympic Games**, up to 2014? --- ## Subset the data To answer this question, we create a data subset that focuses only on: - Gold medal results -- - Athletes from Canada (CAN), Norway (NOR), or Sweden (SWE), and -- - Results from the five Winter Olympics between 1998 to 2014, inclusive. --- class: middle <table class="table" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:right;"> Year </th> <th style="text-align:left;"> City </th> <th style="text-align:left;"> Sport </th> <th style="text-align:left;"> Discipline </th> <th style="text-align:left;"> Athlete </th> <th style="text-align:left;"> Country </th> <th style="text-align:left;"> Gender </th> <th style="text-align:left;"> Event </th> <th style="text-align:left;"> Medal </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Biathlon </td> <td style="text-align:left;"> Biathlon </td> <td style="text-align:left;"> BJOERNDALEN, Ole Einar </td> <td style="text-align:left;"> NOR </td> <td style="text-align:left;"> Men </td> <td style="text-align:left;"> 10KM </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Biathlon </td> <td style="text-align:left;"> Biathlon </td> <td style="text-align:left;"> HANEVOLD, Halvard </td> <td style="text-align:left;"> NOR </td> <td style="text-align:left;"> Men </td> <td style="text-align:left;"> 20KM </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Bobsleigh </td> <td style="text-align:left;"> Bobsleigh </td> <td style="text-align:left;"> LUEDERS, Pierre </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> Men </td> <td style="text-align:left;"> Two-Man </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Bobsleigh </td> <td style="text-align:left;"> Bobsleigh </td> <td style="text-align:left;"> MACEACHERN, David </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> Men </td> <td style="text-align:left;"> Two-Man </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> BETKER, Jan </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> Women </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> FORD, Atina </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> Women </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> GUDEREIT, Marcia </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> Women </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> MCCUSKER, Joan </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> Women </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> Gold </td> </tr> </tbody> </table> --- ## Wrangle the data In the `winter` data set, the data is structured such that **one row is one medal-winning athlete, per country, per year**. However... -- - Team events (e.g., bobsleigh, curling) comprise multiple athletes, and -- - Within teams that achieve a podium finish, each athlete is awarded a medal. -- For this analysis, we need to wrangle the data to get it into a format where one row represents **one gold medal per event, per country, per year**. --- ## Create an 'identifier' variable We can use these existing variables to create a unique ID for each gold medal won per country per event: - Year - Sport - Discipline - Country - Gender - Event --- ## Check the new variable <table class="table" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> unique_event_ID </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> 1998_Biathlon_Biathlon_NOR_Men_10KM </td> </tr> <tr> <td style="text-align:left;"> 1998_Biathlon_Biathlon_NOR_Men_20KM </td> </tr> <tr> <td style="text-align:left;"> 1998_Bobsleigh_Bobsleigh_CAN_Men_Two-Man </td> </tr> <tr> <td style="text-align:left;"> 1998_Bobsleigh_Bobsleigh_CAN_Men_Two-Man </td> </tr> <tr> <td style="text-align:left;"> 1998_Curling_Curling_CAN_Women_Curling </td> </tr> <tr> <td style="text-align:left;"> 1998_Curling_Curling_CAN_Women_Curling </td> </tr> <tr> <td style="text-align:left;"> 1998_Curling_Curling_CAN_Women_Curling </td> </tr> <tr> <td style="text-align:left;"> 1998_Curling_Curling_CAN_Women_Curling </td> </tr> <tr> <td style="text-align:left;"> 1998_Curling_Curling_CAN_Women_Curling </td> </tr> </tbody> </table> --- ## Identify and omit rows with duplicate IDs ...so that one row = one gold medal per event, per country, per year. -- <table class="table" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:right;"> Year </th> <th style="text-align:left;"> City </th> <th style="text-align:left;"> Sport </th> <th style="text-align:left;"> Discipline </th> <th style="text-align:left;"> Country </th> <th style="text-align:left;"> Event </th> <th style="text-align:left;"> Medal </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Biathlon </td> <td style="text-align:left;"> Biathlon </td> <td style="text-align:left;"> NOR </td> <td style="text-align:left;"> 10KM </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Biathlon </td> <td style="text-align:left;"> Biathlon </td> <td style="text-align:left;"> NOR </td> <td style="text-align:left;"> 20KM </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Bobsleigh </td> <td style="text-align:left;"> Bobsleigh </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> Two-Man </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Skating </td> <td style="text-align:left;"> Short Track Speed Skating </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> 5000M Relay </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Skating </td> <td style="text-align:left;"> Short Track Speed Skating </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> 500M </td> <td style="text-align:left;"> Gold </td> </tr> </tbody> </table> --- class: center, middle Now we have tidy data in the format we need for analysis! <img src="https://raw.githubusercontent.com/jacquietran/2019_stats_teachers_day/master/images/rickandmorty.gif" /> --- ## Calculate gold medal totals We use the wrangled data to calculate the **total number of gold medals** won by **Canada, Norway, and Sweden** at each of the **Winter Games between 1998 and 2014**. --- ## Calculate gold medal totals From this... <table class="table" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:right;"> Year </th> <th style="text-align:left;"> City </th> <th style="text-align:left;"> Sport </th> <th style="text-align:left;"> Discipline </th> <th style="text-align:left;"> Country </th> <th style="text-align:left;"> Event </th> <th style="text-align:left;"> Medal </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Biathlon </td> <td style="text-align:left;"> Biathlon </td> <td style="text-align:left;"> NOR </td> <td style="text-align:left;"> 10KM </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Biathlon </td> <td style="text-align:left;"> Biathlon </td> <td style="text-align:left;"> NOR </td> <td style="text-align:left;"> 20KM </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Bobsleigh </td> <td style="text-align:left;"> Bobsleigh </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> Two-Man </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> Curling </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Skating </td> <td style="text-align:left;"> Short Track Speed Skating </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> 5000M Relay </td> <td style="text-align:left;"> Gold </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> Skating </td> <td style="text-align:left;"> Short Track Speed Skating </td> <td style="text-align:left;"> CAN </td> <td style="text-align:left;"> 500M </td> <td style="text-align:left;"> Gold </td> </tr> </tbody> </table> --- ## Calculate gold medal totals ...to this: <table class="table" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:right;"> Year </th> <th style="text-align:left;"> City </th> <th style="text-align:left;"> Country </th> <th style="text-align:right;"> gold_medal_total </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> CAN </td> <td style="text-align:right;"> 6 </td> </tr> <tr> <td style="text-align:right;"> 1998 </td> <td style="text-align:left;"> Nagano </td> <td style="text-align:left;"> NOR </td> <td style="text-align:right;"> 10 </td> </tr> <tr> <td style="text-align:right;"> 2002 </td> <td style="text-align:left;"> Salt Lake City </td> <td style="text-align:left;"> CAN </td> <td style="text-align:right;"> 8 </td> </tr> <tr> <td style="text-align:right;"> 2002 </td> <td style="text-align:left;"> Salt Lake City </td> <td style="text-align:left;"> NOR </td> <td style="text-align:right;"> 12 </td> </tr> <tr> <td style="text-align:right;"> 2006 </td> <td style="text-align:left;"> Turin </td> <td style="text-align:left;"> CAN </td> <td style="text-align:right;"> 7 </td> </tr> <tr> <td style="text-align:right;"> 2006 </td> <td style="text-align:left;"> Turin </td> <td style="text-align:left;"> NOR </td> <td style="text-align:right;"> 2 </td> </tr> <tr> <td style="text-align:right;"> 2006 </td> <td style="text-align:left;"> Turin </td> <td style="text-align:left;"> SWE </td> <td style="text-align:right;"> 7 </td> </tr> </tbody> </table> --- Go beyond tables and make visual interpretation easier!  --- class: inverse, center, middle # Sports and recreation data sets --- ## Tennis .pull-left[ <img src="https://raw.githubusercontent.com/jacquietran/2019_stats_teachers_day/master/images/ausopen.jpg" width="550px" /> ] .pull-right[ Open Era (1968 to now) Grand Slam finals results [**(Women's Singles link)**](https://data.world/fsd01/tennis-grand-slam-championships-champion-vs-runner-up-women) [**(Men's Singles link)**](https://data.world/fsd01/tennis-grand-slam-championships-champion-vs-runner-up-men) ] --- ## Football (Soccer) .pull-left[ <img src="https://raw.githubusercontent.com/jacquietran/2019_stats_teachers_day/master/images/epl.JPG" width="550px" /> ] .pull-right[ English Premier League game statistics over 10 seasons from 2009/10 to now [**(link)**](https://datahub.io/sports-data/english-premier-league) ] --- ## Cricket .pull-left[ <img src="https://raw.githubusercontent.com/jacquietran/2019_stats_teachers_day/master/images/whiteferns.JPG" width="550px" /> ] .pull-right[ Ball-by-ball information for men's and women's cricket across all formats [**(link)**](https://cricsheet.org/) ] --- ## Bike-sharing .pull-left[ <img src="https://raw.githubusercontent.com/jacquietran/2019_stats_teachers_day/master/images/bikeshare.JPG" width="550px" /> ] .pull-right[ New York City Citi Bike trip data [**(link)**](https://www.citibikenyc.com/system-data) ] --- class: inverse, center, middle <img src="https://raw.githubusercontent.com/jacquietran/2019_stats_teachers_day/master/images/mario_thanks.gif" width="500px" /> ## @jacquietran